Improving Atmospheric and Proton Decay Physics

Y. Suzuki Kamioka Observatory, ICRR, University of Tokyo, Japan Feb. 8, 2006

An 'Ultimate' Neutrino and Proton Decay Experiment

Very personal view for a future (10~20 years from now) astro-particle physics detector

Y. Suzuki Kamioka Observatory, ICRR, University of Tokyo, Japan

An 'Ultimate' detector in ~2020

- Best sensitivity
- Scalability and flexibility for a situation change in future
- Shorter time to construct and shorter running time to obtain results

Proton Decay

What is the required sensitivity

Theorists do not give us any guarantee Some theorists say just around the corner, and others say 1~2x 10³⁵ years for $e\pi^0$, vK is important, vK is suppressed and so on

Theorists' best bets ??? : $10^{35} \sim 10^{36}$ yr for $e\pi^{0}$: < 10^{35} yr for vK, μ K \rightarrow Detector Size: The larger, the better ?

Proton Decay Detector

 Only factor 3=sqrt(10) improvement (for 10 years operation: 2020 ~ 2030)
 "NEED" ~ 5 Mt fiducial mass for factor 10=sqrt(100) improvement in 10 years

SK-I (40% cover.: 2PMT/m²) and SK-II (20% cover.: 1PMT/m²) give similar efficiency and BG. [SK-PMT: 50cm in diameter] SK-I+SK-II(421d): 118 ktyr -> 6.9x10³³yr 90%CL

Sensitivity for $p \rightarrow e^+ \pi^0$

Sensitivity for $p \rightarrow e^+ \pi^0$

Sensitivity for $p \rightarrow vK^+$

Assume; 40% coverage:

Need more study for the 20% coverage

How a ~5 Mt detector looks like

Super-UNO Super-HK Super-???

Requirements for the detector

1) Scalability: May start with 1 Mt but can be expandable

2) Low cost
3) Short construction time
Y. Suzuki, NO-VE2006, Feb.-8

TITAND

Totally Immersible Tank Assaying Nucleon Decay

Y. Suzuki hep-ex/0110005 (in 2001) Multi-Megaton Water Cherenkov Detector for a Proton Decay Search -- TITAND

浮沈式陽子崩壊実験装置イメージ図

TITAND-I 85m x 85m x 105m x 4 units = 3.03 Mt (2.22 Mt fiducial : ~ SK x 100) TITAND-II 2 module \rightarrow 4.4 Mt f.v. (SK x 200) For 3.03 Mt module Steel + epoxy lining (salt water <-> pure water) 69,600 tons + α (78,000 tons) Y. Suzuki, NO-VE2006, F60-8 13

How to construct

- Construct steel container (unit) 85m x 85m x 105m Maximum size of DOCK in the world
 - width:108m x length: 480m
- 2. Install PMTs at the DOCK

Number of PMTs (or any equivalent light sensors): 179,200 PMTs (1/2 SK density) for TITAND-I

3. Tow units to the site

Surface Floating Plat Form

sub-merging floating object

10 ktons /day (2 system) 100 days for 2 Mton

May be 30m x 40m (steel + epoxy lining) is enough

- Generator \rightarrow 1.5 MW
- Desalination system
- Water purification system
- Research buildings
 - Electronics & computer
 - Dormitory
 - Restrant & Caffe

Where we can place the detector? Tidal current < 3 knot ~ 5.6km /hour In order to keep the detector in place

Y. Suzuki, NO-VE2006, Feb.-8

Construction periods

	1 st yr	2 nd yr	3 rd yr
Design			
Preparation			
Construction			
Set up			

Total 3 years construction time:

very short But the manufacturing time for the light sensors is not included.

Crude cost estimate

TITAND-I 2.22 Mt (~100xSK) fiducial volume

Container	\$141 M	
Install	25	
Light sensors	179.2	1k\$ /channel (20% coverage)
Electronics	17.9	100\$ /channel
Floating Plat form	8.6	
Generator	5.0	\$211.6 M (2.2Mton fid.)
Desalination Plant	32.0	
Others	10.0	Underground Cavity
Total	\$ 418.7M	Tank and structure

Cost: TITAND-II 4.44 M ton (~200xSK) < (TITAND-I x 2)

Depth requirement

Assumption: 1µsec dead time for CR events

Improvement of the Atmospheric Neutrino Data by TITAND-II

• <u>Full SK detector MC and SK reconstruction</u> <u>tools.</u> Mass Hierarchy:

Our future home work

Small θ_{13} case:

- w/ same systematic errors
- Fixed Parameters
 - $-\Delta m^{2}_{23} = 2.5 \times 10^{-3} eV^{2}$ (positive)
 - $\Delta m^{2}_{12} = 8.3 \times 10^{-5} eV^{2}$ and $\sin^{2}2\theta_{12} = 0.825$
- Created for the combinations of various
 - 3 parameter sets (test points)
 - $\sin^2\theta_{23} = 0.40, \, 0.45, \, 0.50, \, 0.55, \, 0.60$
 - $\sin^2\theta_{13} = 0.04, 0.02, 0.006, 0.00$
 - δCP = 45°, 135°, 225°, 315°

Y. Suzuki, NO-VE2006, Feb.-8 future home work

Data sets

- Created data sets for 100 yrs full simulation
- Statistically scaled to 800 yrs
- 800 yrs of SK: 18 Mtyr

= 4 years of TITAND-II(4.4Mt)
36 years of UNO or HK
– Compared to 80yrs of SK = 4 yrs of UNO or HK

5 months of TITAND-II

– Compared to 20yrs of SK = SK by 2020

20 year of SK (SK 'final' results!)

 $sin^2\theta_{23} = 0.40 \text{ or } 0.60 (sin^22\theta_{23}=0.96)$: Possible for larger $sin^2\theta_{13}$ for SK 20 yrs $sin^2\theta_{23} = 0.45 \text{ or } 0.55 (sin^22\theta_{23}=0.99)$: Difficult for SK 20 yrs

80yrs SK ~ 3.6yrs of UNO or HK

 $s^{2}2\theta_{12}=0.825$ $s^{2}\theta_{23}=0.40 \sim 0.60$ $s^{2}\theta_{13}=0.00\sim0.04$ $\delta cp=45^{\circ}$ $\Delta m^{2}_{12}=8.3x10^{-5}$ $\Delta m^{2}_{23}=2.5x10^{-3}$ 0.14

For UNO or HK, discrimination is possible for $sin^2\theta_{23} = 0.40$ or 0.60 ($sin^22\theta_{23}=0.96$)

800yrs SK ~ 4yrs of TITAND-II

For TITAN-II, octant can be resolved for $sin^2\theta_{23} > 0.45$ or < 0.55 ($sin^22\theta_{23} > 0.99$)

No strong CP phase dependence for Octant search

CP phase (80yrs SK = 3.6yrs of UNO or HK)

For UNO or HK, CP phase may be seen if θ_{13} is close to the CHOOZ limit

I. JUZUKI, INU-VEZUUD, FED.-Ö

CP phase (800yrs SK = 4 yrs of TINTAND-II)

For TITAND-II, CP phase could be determined if θ_{13} is larger than $\sin^2\theta_{13} \sim 0.006$

No strong θ_{23} dependence for CP phase search

Non-zero θ_{13}

Other physics with TITAND

- Serve as a movable far detector for LBLE at any distance
- Supernovae
- Can be added magnetic detector for neutrino factory
- May be more

Conclusion

Astroparticle Physicists in the 21st Century would travel on the sea

